Economic Bulletin of the National Mining University

 

IssuesSectionsAuthorsKeywords

Article

Issue:2021 №1 (73)
Section:Finances, accounting and taxation
UDK:65.012
DOI:https://doi.org/10.33271/ebdut/73.158
Article language:Ukrainian
Pages:158-169
Title:Expert evaluations in financial decision making
Authors:Kozenkova V. D., National Metallurgical Academy of Ukraine,
Kozenkova N. P., National Metallurgical Academy of Ukraine
Annotation:Metods. The results are obtained through the application of the following methods: analysis and synthesis – in highlighting the essence of management decisions and the information it provides; systems approach – in determining the basics of expert assessment; comparisons – to determine the advantages and disadvantages of peer review scales; abstract-logical analysis – for generalization, formulation of conclusions. Results. There are defined the tasks of choosing administrative decisions and requirements to formation of the information that provides them. Methods of evaluation and selection of alternative solutions are described. The methodology for determining generalizing indicators is considered. Methods of multicriteria optimization and selection of optimal alternatives according to several efficiency criteria are analyzed. The main stages of the procedures of expert evaluation and ranking of indicators are analyzed. The composition of the indicators used to assess the consistency of the ranking is established. The essence of the scales used in the expert evaluation is analyzed, their advantages and disadvantages are determined. It is determined that depending on the scales on which expert assessments are obtained, different weights can be assigned to the latter. It is shown, that an estimate that is provided on a scale with a large number of gradations, respectively, should have more weight, because it has greater information value than the estimates obtained on a scale with a smaller number of gradations. Novelty. The changes in the informativeness of assessments on different assessment scales are characterized. The advantages of using power scales to solve expert evaluation problems are shown, in particular for estimates that can be obtained on the basis of fuzzy-linguistic approaches and definition of membership functions, where incorrectly defined boundaries of evaluation scales can distort the final information. Practical value. It is proposed to determine the quality of expert assessments based on the assessment of their information value, in particular on the basis of calculating the amount of information in the assessment using the Hartley formula, which makes it possible to choose the assessment scale in accordance with the expert assessment. 
Keywords:Estimation, Expert estimation, Methods of multicriteria optimization, Scales of expert estimation, Weight of estimation, Estimation of information value, Hartley coefficient
File of the article:EV20211_158-169.pdf
Literature:
  • 1. Kini, R., & Rajfa, X. (1981). Prinyatie resheniy pri mnogikh kriteriyakh: Predpochteniya i zameshcheniya. Moskva: Radio i svyaz.
  • 2. Belyaev, L.S. (1978). Reshenie slozhnykh optimizatsionnykh zadach v usloviyakh neopredelennosti. Novosibirsk: Nauka.
  • 3. Nogin, V.D. (2020). Mnozhestvo i printsip Pareto. Sankt-Peterburg: Izdatelsko-poligraficheskaya assotsiatsiya vysshikh uchebnykh zavedeniy.
  • 4. Morgenshtern, O., & fon Neyman, Dzh. (2012). Teoriya igr i ekonomicheskoe povedenie. Moskva. : Kniga po Trebovaniyu.
  • 5. Fishbern, P.S. (1977). Teoriya poleznosti dlya prinyatiya resheniy. Moskva: Nauka.
  • 6. Bonciocat, A.I., Bonciocat, N.C., & Cipu, M. (2014). Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients. Versita, Vol. 22(1), 73-84. doi.org/10.2478/auom-2014-0007
  • 7. Yager, R.A. (1982). Measuring Tranquility and Anxiety in Decision-Making: an Application of Fuzzy Sets. International Journal of General Systems, Vol. 8, (3), 139-146/ doi.org/10.1080/03081078208547443
  • 8. Saati, T. (1993). Prinyatie resheniy. Metod analiza ierarhiy. Moskva: Radio i svyaz.
  • 9. Borisov, A.N., & Levchenko, A.S. (1982). Metody interaktivnoy otsenki resheniy. Riga: Zinatne.
  • 10. Bellman, R., & Zade, L. (1976). Prinyatie resheniy v rasplyvchatykh usloviyakh. Voprosy analiza i protsedury prinyatiya resheniy. Moskva: Mir.
  • 11. Podinovskiy, V.V., & Nogin, V.D. (1982). Pareto-optimalnye resheniya mnogokriterialnykh zadach. Moskva: Nauka.
  • 12 Chernov, G., & Mozes, L. (1962). Elementarnaya teoriya statisticheskikh resheniy. Moskva: Sov. radio.
  • 13. Artobolevskiy, I.I. (1979). Mekhanizmy v sovremennoy tekhnike. Moskva: Nauka. T. 1.
  • 14. Rua, B. (1976). Klassifikatsiya i vybor pri nalichii neskolkikh kriteriev (metod ELEKTRA). Voprosy analiza i procedury prinyatiya resheniy. Moskva: Mir.
  • 15. Petrovskiy, A.B. (2009). Teoriya prinyatiya resheniy. Moskva: Izdatelskiy tsentr «Akademiya».
  • 16. Podinovskiy, V.V. (2007). Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterialnykh zadachakh prinyatiya resheniy. Moskva: Fizmatlit.
  • 17. Gusev, V.B., & Paveliev, V.V. (2013). Ispolzovanie nepreryvnykh shkal pri otsenivanii i prinyatii resheniy v slozhnykh problemnykh situatsiyakh. Moskva: IPU RAN.
  • 18. Grabovetskyy, B.Ye. (2010). Metody ekspertnykh otsіnok: teorіia, metodolohіia, napryamky vykorystannia. Vіnnytsia: VNTU.
  • 19. Litvak, B.G. (1982). Ekspertnaya informatsiya: Metody polucheniya i analiza. Moskva: Radio i svyaz.
  • 20. Pankova, L.A., Petrovskiy A.M., & Shneyderman, M.V. (1984). Organizatsiya ekspertiz i analiz ekspertnoy informatsii. Moskva: Nauka.
  • 21. Jouini, M.N., & Clemen, R.T. (1996). Copula Models for Aggregation Expert Opinions/ M.N. Jouini, R.T Clemen // Operations Research. - 1996. - Vol. 44. - Iss. 3. - P. 444-457. doi.org/10.1287/opre.44.3.444
  • 22. Kendall, M.Dzh., & Styuart, A. (1976). Mnogomernyy statisticheskiy analiz i vremennye ryady. Moskva: Nauka.
  • 23. Orlov, A.I. (2002). Ekonometrika. Moskva: Ekzamen.
  • 24. Tsyhanok, V.V. (2011). Vybіr shkaly otsіnyuvannia ekspertom u protsesі vykonannia nym parnykh porіvnian v systemakh pіdtrymky priyniattia rіshen. Reiestratsiia, zberіhannia і obrobka danykh, T.13, (3), 92-105.
  • 25. Lootsma, F.A. (1989). Conflict resolution via pairwise comparisons of concessions. European Journal of Operational Research, Vol. 40, pp.109-116. doi.org/10.1016/0377-2217(89)90278-6
  • 26. Ma D., & Zheng, X. (1991). 9/9-9/1 Scale Method of AHP. Proceedings from the second International Symposium on the AHP. Pittsburgh, PA: University of Pittsburgh, Vol. 1, pp.197-202. doi.org/10.13033/isahp.y1991.001
  • 27. Dodd, F.J., Donegan H.A., & McMaster, T.B.M. (1995). Scale Horizons in Analytic Hierarchies. J. Multi-Criteria Decis. Anal, (4), pp. 177-188. doi.org/10.1002/mcda.4020040304
  • 28. Hartley, R.V.L. (1928). Transmission of information/ R.V.L.Hartley // Bell System Technical Journal, (7). pp. 535-563. doi.org/10.1002/j.1538-7305.1928.tb01236.x