Economic Bulletin of the National Mining University

 

IssuesSectionsAuthorsKeywords

Article

Issue:2021 №1 (73)
Section:Entepreneurship and economics of enterprise
UDK:334.75.001:665.65
DOI:https://doi.org/10.33271/ebdut/73.219
Article language:Ukrainian
Pages:219-227
Title:Neural network modeling of innovative development of JSC «Ukrtransnaft»
Author:Klymenko K. V., JSC «Ukrtransnafta
Annotation:Methods. The following methods were used in the research: analysis and synthesis – to set the problem of neural network modeling of the level of innovative development of economic entities and the selection of its stages; methods of generalization and grouping – in the formation of a system of individual indicators to determine the level of innovative development; multilayer perceptron training method – to characterize the operation of the neural network. Results. The article considers the possibility of applying the method of forecasting the level of innovative development of enterprises of the oil transportation complex with the use of neural network modeling. The problem of neural network modeling of the level of innovative development of economic entities is set, and its six stages are defined: formation of a system of indicators of the level of innovative development, preliminary data processing, neural network formation, neural network training and result. There has been formed a system of individual indicators for determining the level of innovative development by production, personnel, financial and property components. These indicators are used to build a neural network. There are specific limitations that characterize the learning of the neural network and distinguish it from the general optimization problems: astronomical number of parameters, the need for high parallelism in learning, multicriteria of problems, the need to find an area in which the values of all minimized functions are close to minimum. The advantages and disadvantages of neural network forecasting of the level of innovative development of enterprises are determined. Novelty. An algorithm for forecasting the level of innovative development of oil transportation enterprises using neural network modeling is proposed. A system of individual indicators for determining the level of innovative development by production, personnel, financial and property components has been formed. Practical value. The results of the study have theoretical and practical value, as they allow the use of neural network modeling to predict the level of innovative development of enterprises. 
Keywords:Innovative development, Neural networks, Multilayer perceptron, Oil transportation enterprise
File of the article:EV20211_219-227.pdf
Literature:
  • 1. Schumpeter, Joseph A. (1934). The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle. University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship, Retrieved from SSRN: https://ssrn.com/abstract=1496199
  • 2. Leyden, D. (2016). Publicsector entrepreneurship and the creation of a sustainable innovative economy. Small Business Economics, Vol. 46, Issue 4, P. 553-564. https://doi.org/10.1007/s11187-016-9706-0
  • 3. Mazzucato, M. (2016). From market fixing to marketcreating: a new framework for innovation policy. Industry and Innovation, Vol. 23, Issue 2, P. 140-156. https://doi.org/10.1080/13662716.2016.1146124
  • 4. Havrylenko M.M., Horal, L.T., & Berlous, V.V. (2019). Transformatsiia ekonomichnykh system pid vplyvom tsyfrovizatsii. Biznes-Inform, (12). 261-267. Re- trieved from https://doi.org/10.32983/2222-4459-2019-12-261-267
  • 5. Kalinina, I.O. (2008). Vykorystannia neyromerezhevykh methodiv u zadachakh finansovoho menedzhmentu. Naukovi pratsi Chornomorskoho derzhavnoho universytetu imeni Petra Mohyly, Ser. : Kompiuterni tekhnolohii, T.90, Issue 77, 160-167. Retrieved from http://nbuv.gov.ua/UJRN/Npchduct_2008_90_77_19
  • 6. Azarova, A.O., Kovalchuk, O.A., & Sytnik, O.D. (2011). Rozroblennia matematychnoho metodu identyfikatsii rivnia motyvatsii personaly zasobamy neyromerezhevykh tekhnolohiy. Modeliuvannia ta infor- matsiyni systemy v ekonomitsi, Issue, 85, 21-27. Re- trieved from http://nbuv.gov.ua/UJRN/Mise_2011_85_5
  • 7. Tepliuk, M.A., & Shapran, O.A. (2020). Otsini- uvannia rivnia innovatsiynoho rozvytku pidpryiemstva v konteksti intehratsii nauky ta biznesu. Proceedings of Stratehiia ekonomichnoho rozvytku Ukrainy. Zbirnyk naukovykh prats. Ministerstvo osvity i nauky Ukrainy. DVNZ «Kyivskyy natsionalnyy ekonomichnyy univer- sytet imeni V. Hetmana. O.M. Hrebeshkova (Ed.). Kyiv: KNEU, Issue 46, 105-121.
  • 8. Maliuta, L. (2011). Otsiniuvannia rivnia innovatsiynoho rozvytku promyslovoho pidpryiemstva. Sotsialno-ekonomichni problemy i derzhava. Issue 1(4). Retrieved from http://sepd.tntu.edu.ua/images/stories/pdf/2011/11mlyrpp.pdf.
  • 9. Kuzminykh, N.A. (2011). Metodicheskie podkhody k otsenke urovnia innovatsionnogo razvitiya sotsialno-ekonomicheskikh sistem: preimushchestva i nedostatki. Intellekt. Innovatsii. Investitsii. (2), 30-35.
  • 10. Yurynets, Z.V., & Kruhliakova, V.V. (2016). Otsiniuvannia innovatsiynoho potentsialu subiektiv hospodariuvannia harchovoi promyslovosti. Ekonomika ta upravlinnia pidpryiemsvamy. Ekonomika i suspilstvo. Mukachivskyy Derzhavnyy universytet. Issue (7), 546-550.
  • 11. Yemelianov, O.Yu., Kret, I.Z., & Petrushka, T.O. (2020). Innovatsiynyy rozvytok pidpryiemstva: kryterii ta vplyv. Wielokierunkowosc Jako Gwarancja Postepu Naukowego, Tom 1, 24-26. DOI
  • 10.36074.21.02.2020.v1.05
  • 12. Cherep, A.V., & Lyzunenko, M.M. (2014). Metody otsinky efektyvnosti upravlinnia innovatsiynoiu diialnistiu pidpryiemstv mashynobuduvannia. Zbirnyk naukovykh prats Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu, (ekonomichni nauky). 3(27), 113-119.
  • 13. Zubkov, R.S. (2016). Osnovni pokaznyky innovatsiynoi diialnosti promyslovykh pidpryiemstv Prychornomorskoho rehionu Ukrainy. Efektyvna ekonomika, (12).
  • 14. Kravets, P.I., Lukina T.Y., Shymkovych, V.M., & Tkach, I.I. (2012). Rozrobka ta doslidzhennia tekhnolohii otsiniuvannia pokaznykiv neyromerezhevykh modeley MIMO-obiektiv upravlinnia. Visnyk natsional- noho tekhnichnoho universytetu Ukrainy «KPI». In- formatyka, upravlinnia ta obchysliuvalna tekhnika, Issue
  • 57, 144-149. Retrieved from http://nbuv.gov.ua/UJRN/Vkpi_iuot_2012_57_28
  • 15. Kravets, P.I., Shymkovych, V.M., & Zubenko, H.A. (2012). Tekhnolohiia aparatno-prohram- noi realizatsii shtuchnoho neyrona ta shtuchnykh ney- ronnykh merezh zasobamy FPGA. Visnyk natsionalnoho tekhnichnoho universytetu Ukrainy «KPI». Informatyka, upravlinnia ta obchysliuvalna tekhnika, Issue 55, 174-180.
  • 16. Kalinina, I.O. (2009). Doslidzhennia neyromerezhevykh metodiv u zadachakh prohnozuvannia. Naukovi pratsi Chornomorskoho derzhavnoho universytetu imeni Petra Mohyly, Ser. : Kompiuterni tekhnolohii, T. 106, Issue 93, 132-138. Retrieved from http://nbuv.gov.ua/UJRN/Npchduct_2009_106_93_19
  • 17. Kharynovych-Yavorska, D.O. (2014). Rol neyromerezhevykh system u formuvanni konkurentnoi stratehii torhovelnoho pidpryiemstva, Nauka i ekonomika, Issue 1, 165-169. Retrieved from http://nbuv.gov.ua/UJRN/Nie_2014_1_29