Література: | - 1. Anand, M. (2019). Analytics: Fueling The Digital Economy. Digitalist magazine. Retrieved from https://www.digitalistmag.com/future-of-work/2017/02/06/analytics-fueling-digital-economy-pp.45-60.
- 2. Aalst, W.M.P., Pesic, M., & Song, M. (2019). Beyond process mining: From the past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 38-52. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-13094-6_5
- 3. Brynjolfsson, E., & Kahin, B. (2000). Introduction, in Understanding the Digital Economy. / E. Brynjolfsson, B. Kahin (eds). Cambridge: MIT Press. pp. 1-10.
- 4. Bowyer, J., Hal,l L., Moore, T., Chawla, N., and Kegelmeyer, W. (2000). A parallel decision tree builder for mining very large visualization datasets. Proceedings from MIIM ‘2000: IEEE International Conference «Systems, Man, and Cybernetics», vol. 3, pp. 188-189.
- 5. Bukht, R., & Hicks, R. (2018). Definition, concept and measurement of the digital economy. Bulle- tin of international organizations. V. 13, № 2, pp. 143-172. https://doi.org/10.17323/1996-7845-2018-02-07
- 6. Baruque, B., & Corchado, E. (2019). Fusion methods for unsupervised learning, ensembles, (Vol. 322). Berlin, Germany: Springer. P. 87.
- 7. Conforti, R., de Leoni, M., La Rosa, M., & van der Aalst, W.M.P. (2013). Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, O. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116-132. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-38709-8_8
- 8. Dahlman, C., Mealy, S., Wermelinger, M. (2016). Harnessing the Digital Economy for Developing Countries. Paris: OECD. Retrieved from http://www.oecdilibrary.org/docserver/download/4adffb24-en.pdf
- 9. Donadello, I., Francescomarino, Ch., Magg, F., Ricci, F., & Shikhizada, A. (2023). Outcome-Oriented Prescriptive Process Monitoring based on Temporal Logic Patterns. Engineering Applications of Artificial Intelligence, Volume 126, Part B, Elsevier, pp. 28-35. https://doi.org/10.1016/j.engappai.2023.106899
- 10. Data Age 2025. The Digitization of the World. Seagate. Retrieved from https://www.seagate.com/ru/ru/our-story/data-age-2025/
- 11. Digital Globalization: The New Era of Global Flows. New York, NY: McKinsey Global Institute. Retrieved from mode: https://www.mckinsey.de/sites/mck_files/files/mgi_digital_globalization.pdf;
- 12. Fournier,-Viger, P., Gomariz, A., Šebek, M., & Hlosta, M. (2014). VGEN: Fast Vertical Mining of Sequential Generator Patterns. In Proceedings from MIIM ’14: Sixteenth International Conference «Data Warehousing and Knowledge Discovery», Munich, Germany, (1-5 September, 2014). (pp. 476-488).
- 13. Geissbauer, R., Vedso, J., & Schrauf, S. (2016). Industry 4.0: Building the Digital Enterprise. London: Pwc. Retrieved from https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-yourdigital-enterprise-april-2016.pdf
- 14. Howe, J., Costanzo, M., Fey, P., Gojobor, T.i, Hannic, L.k, & Rhee, S. (2008). Big data: The future of biocuration. Nature, vol. 455, no.7209, pp. 47-50.
- 15. Kang, B., Kim, D., & Kang, S.H. (2012). Real-time business process monitoring method for prediction of abnormal termination using knni-based lof prediction. Expert Syst. P.120.
- 16. Lo, D., Cheng, H. (2011). Lucia: Mining closed discriminative dyadic sequential patterns. In: Proc. of EDBT, (pp. 21-32). Springer. https://doi.org/10.1145/1951365.1951371
- 17. Manyika, J. et al. (2016). Digital Globalization: The New Era of Global Flows. New York, NY: McKinsey Global Institute. Retrieved from https://www.mckinsey.de/sites/mck_files/files/mgi_digital_globalization.pdf (pp. 41-47).
- 18. OECD (2016). Measuring GDP in a Digitalised Economy. Paris. Retrieved from www.oecd.org/dev/Measuring-GDP-in-a-digitalised-economy.pdf
- 19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P. (2019). Declare: Full support for loosely structured processes. Proceedings from MIIM ‘19: EDOC, pp. 287-300.
- 20. Panigrahi, R., & Borah, S. (2018). Rank Allocation to J48 Group of Decision Tree Classifiers using Binary and Multiclass Intrusion Detection Datasets. Procedia Computer Science, Volume 132, pp. 323-332.
- 21. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., & Wynn, M.T. (2013). Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211-216. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-36285-9_22
- 22. Quinlan, J. (1993). C4.5: Programs for Machine Learning. M. Kaufmann Publishers Inc, p. 37.
- 23. Quinlan, J., (1996). Improved use of continuous attributes in C4.5. ArXiv preprint cs/9603103, pp. 78-82. https://doi.org/10.1613/jair.279
- 24. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., & der Hofstede, A.H.M. (2013). Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops. Lecture Notes in Business Information Processing, vol. 132, pp. 174-186. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-36285-9_18
- 25. Westergaard. M., & Maggi, F.M. (2011). Modeling and verification of a protocol for operational support using coloured petri nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 169-188. Springer, Heidelberg.
- 26. Wolf, F., Brunk J., Becker J. (2021). A Framework of Business Process Monitoring and Prediction Techniques, Springer International Publishing, pp. 43-47. https://doi.org/10.1007/978-3-030-86797-3_47
- 27. Wil M.P. van der Aalst (2022). Process Mining: A 360 Degree Overview, Springer. https://doi.org/10.1007/978-3-031-08848-3_1
- 28. Xu,M, wang, J., & Chen, T. (2006). Improved decision tree algorithm: ID3+, intelligent computing in signal. Processing and pattern recognition, Vol. 345, pp. 141-149.
|